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Abstract— The unloaded quatity factor of resonators whether coupled
magnetically or electrically, with loss or without loss, is estimated by
the critical points (i.e., extreme-reactarscelsusceptancepoints) method. The
critical-points method derived from this paper is a fast and accurate
method for unloaded Q measurement and is suitable for general external
coupting environment. Rc=l

I. INTRODUCTION

The unloaded quality factor QO is an important figure since it
establishes an upper limit for the overall device performance. A
number of Q-factor measurement methods are published, and some
good surveys are in [1], [2]. Unfortunately. a simple method for the

measurement of QO is not widely available. ‘The method introduced
by Kajfez and Hwan [3] is convenient in sclme cases but may not

be suitable for lossy external-coupled circuit or for a very small

impedance-locus circle of weak undercoupled cases when the phase
data are not accurate. The measurement method to be derived and
described is convenient and useful for universal cases including
external lossy and weak undercoupled cases.
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11. CIRCUITMODEL AND IMPEDANCE Locus

A. Circuit Modeling in the Vicini@ of Resonant Frequency

It is well known that the equivalent circuits showing frequency

characteristics of one port can be represented by the Foster types [4],

and that the equivalent circuit for input impedance or admittance of
the resonant cavity may be shown in Fig. 1(a) for first Foster form
or Fig. 1(b) for second Foster form, respectively. These equivalent
circuits may be representative of the detuned position near either the
short point (magnetical coupling predominantly) or the open point
(electrical coupling predominantly), respectively.
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B. Impedance Locus in the Vicinip of Resonant Frequency

Take the first-Foster type circuit, for example. The input
impedance can be represented as follows: (b)

Fig. 1. Equivalent circuits of (a) first Foster form and (b) second Foster
form including exterior coupling losses.

(2)where R~ = n2Ro, QO = Ro~m, U-JO = ~/m and
RO, LO, CO are the interior parameters; R, and L. are the exterior
parameters; and n is the turns ratio with interior circuit transformed to
exterior circuit through coupling structures. All these parameters are
normalized to the transmission-line characteristic impedance Rc for
the simplification’s sake. For simplicity, we use the following repre-

sentation in the vicinity of the natural resonant angular frequency &’o:

z 26k for bk <<1 (3)

where, 6k = (@k – wo )/wo, the j%equencytuning paramete~ and

Dk = (1 + (6~/2) )/(1 + 6L), the deviation factor of linearity
defined here. Thus, the input impedance can be represented by

[

R;,
zt(~k) = R.+ 1+(~(&6k~k)21

[
2QotikDkR4

+j LLJo(l+c$k)Le–~+~2Q06kDk)21 (4)
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Fig. 2. The real input-impedance locus of magnetic coupled resonator including couphng losses and reactance ur the vicinity of resonant frequency

Z’Z(UL)= R. +
R;

1+ (2 CJ16k)2

[

2(&)bkR~
+j fJo(l+6k)Le–

1 + (2Q06k)~ 1
for bh <<1. (5)

At the resonant frequency, 21( JO’) = (R. + Rh ) + ~wo L. from (1),
and at the detuned crossover point there are two angular frequencies
W3 and LJ4 on Fig. 2 where Zi (UJ3) = Zt (w4 ), i.e.,

R~ R~

1 + (2 Q063D3)Z = 1+ (2 Qo&D4)2
(6)

2QO&D3~ 2QlJ154D.4R4
wob3Le —

1 + (2 Q063D3)2
= UJ064L. —

1+ (2f&&@4)2”

In solving (6) and (7) simultaneously without regard to the trivial
solution of ti~ = d+, we get

t/a =
1

1 + (2 Q063D3)2
(9)

where, t = woL, /(24?o M): and a = 21)4/(1 + (D3/D4 )). Also.
Z1(e-c) = Rc + jcc and Z1(0) = R, is established only when the
single-resonant model is satisfied. However, since tik is far away from
the detuned crossover point, the dominant factor should be switched
to another resonant model and the values Z1(m ) and Zi (O) evaluated
from (1) become inaccurate. Then, the impedance locus around the
central frequency UIO may have a resemblance to that shown in Fig. 2.
For the sake of comparison, we also show the shijted ideal impedance-
10CUScircle in the case without exterior inductance, the circle of which
is shifted from the Im(Zl ) = O axis to the Im( Z1 ) = uo L. axis.

From Fig. 2, we can see the real atld nearly circular 10CUSis

deformed from the ideal and circular one. The factor t/tican be
called the factor of circle deformation. It is easy to show that the
smaller the factor, the closer the real Impedance locus is to a circle.

111. DERIVATION AND MEASUREMENT

PROCEDURE OF THE CRITICAL-POINTS METHOD

From nearly ck-cular impedance locus, we can get two points

corresponding to two extreme values, max] mum and minimum, of
reactance within this circle. The corresponding frequencies til and
~z are both shown in Fig. 2 and should be in the vicinity of the

resonant frequency for high QO: thus (3) and (5) can be used to find
these extreme frequency-tuning parameters, bl, and 62. Taking the
first-order partial derivatives with respect to tik in the second term of
(5) (i.e., reactance of the input impedance) and then finding points
where the partial derivative is equal to zero, we get

t71m(Zt(tiO( 1 + 6~ ))1

(?Cfk

{

2(2Q06~ )2 1
= 2QOR; t+ 1[1+ (2 QObk)2]’ - 1 + (2Q06~)’ = 0“

(lo)

Points that satisfy (10) are known as critical points [6], and therefore
this method derived here IS named as the critica[-point,s merhod.

Let 2Q06k = r. (& Ds/6k )2 = b, and substitute r, b into (10) and
(9). respectively. We can get

1 – ,rz a

(l+.Z’)’=t= 1 + 1)X2

The solution is

., @-2a -l)+{(b -2a-1 )’-4(b+a)(a - 1)~-=— .——
2(b+a)

The sign “+”’ is the only reasonable solution to (12), After
values of n, b, and .r have been solved. by the definition of

(11)

(12)

these

(13)

the ,frequency-tarting parameters. 61 and 15zcorresponding to two
critical points, are related by

ill = –62 (14)
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Measured input reflection coefficient of tbe dielectric resonator under (a) overcoupled and (b) undercoupled conditions (Smith Chart for impedance).
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(b)

Measured input reflection coefficient of the metal cavity under (a) overcoupled and (b) zmdercoupledconditions (inverted Smith chart for impedance).

The tio can also be evaluated by WO= (WI+uZ )/2 and the bandwidth
of the critical points is 2LJ016LI = IUJ1– uz 1. Alternatively, the QO
can be written as follows:

To reduce random error due to measurement, by using 161I =

b can be averaged and represented by the following:

f; + f: +“2.flf2 - 4.f3f4 (17)
a = 1+ ~(flf3+ flf4+f2f3+ f2f4+qf3f4)

( )

~= h4D4 –b3D3 2

& – 6,

-(

( , )(;-*) 2
f4_f3_ lU!12)2

—
2(f2 – fl)

)

(18)

In the special case, e.g. if R, = L, = O. then a = l,b = m, I.zl = 1
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and QO = 1I (2 [bk /). which can be shown that the critical points in
this case are those located at Re(Zt ) = Im( ZI ), and this corresponds
exactly to the argument developed in [1], [5]. Here, we may name
1x1 as the rnod~cation factor of critical-points bandwidth. Usually,
this factor is close to one and can be ignored in most cases [7].
For the sake of measurement, we can avail ourselves of the vector

network analyzer to measure input impedance in the sweep-frequency
operation mode, then mark the critical-points frequencies fI and fz
in which the corresponding reactance is maximum in jl or fz and
minimum vice versa only within the impedance locus, and finally
mark the detuned crossover frequencies f3 and f4 in which the
corresponding impedance is identical with crossover point. Thus,
QO can be estimated from (15). Moreover, even the simpler (16)
is accurate enough in most cases. For the measured admittance
locus near the detuned-open point, which is electrical coupling
predominantly, the second-Foster type equivalent circuit such as Fig.

1(b) can be used. Follow the same derivation process as mentioned

above. However, the impedance locus and parameters are changed
to the admittance locus and parameters for the dual expression,
respectively. Similar results can be developed and the inverted Smith
Chart can be used for measurement.

IV. EXPERIMENTALRESULTS

To illustrate the principle and procedure, two types of resonators,
dielectric resonator and metal cavity, were measured. In the case of
the overcoupled dielectric resonator, the measured input impedance is
shown in Fig. 3(a) and the frequencies for critical points and detuned
crossover point are: f“l =7.0279 GHz, fz =7.0292 GHz,~3 =7.0123
GHz. and j~ =7.0473 GHz. respectively. Thus, QO =5392 is
estimated from (15), QO =5407 from (16), and Izl =0.997 from
(12). These estimated QO corresponds to the result of Kajfez’s

method, which gets QQ s 5400, and the difference can be negligible
if measured error is considered. Fig. 3(b) is the measured result with
the identical dielectric resonator but in the undercoupled condition,
and in this case fl =7.0397 GHz, fz =7.0410 GHz, fs =7.0329
GHz, and .f.i =7.0500 GHz, thus QO =5353 or QO =5416 and
lx! =0.988 are estimated from (15), (16), and (12), respectively. The
resultant Q. =5400 is nearly identical with the overcoupled result

if measured error is considered and ignored. Fig. 4(a) and (b) are

the measurement plots for the cases of the same metal cavity under
overcoupled and undercoupled conditions, respectively. Again, both

results get QO %2600 by critical-points method with the inverted
Smith Chart, and the small difference can be neglected in practice.
Also note that the modification factor of critical-points bandwidth is

1x1=0.937 and the deviation error of QO between (15) and (16) is less
than 7% even for the case of ti’eak undercoupled shown in Fig. 4(b).

V. CONCLUSION

The principle and measurement procedure described in this paper
result in the critical-points method. As far as the four-frequency
measurement is concerned, four frequencies of three points need
measuring; that is, two critical-points frequencies and two detuned

crossover frequencies on the Smith chart (impedance or inverted
admittance). The unloaded quality QO can be estimated from (15)
quickly and accurately without any subtle discrimination between
10SSYand lossless, undercoupled, and overcoupled cases. As far as
the two-frequency measurement is concerned, only two frequencies of
two critical points need measuring. From (16), it is worth pointing out
that the unloaded QO could be measured and evaluated in reelection

mode as easily as its counterpart the loaded Q L i?ltransmission mode

(i.e.. halj-power points’ method). This conclusion stands to reason in
most cases as long as practical errors are ignored. Thus, only two
critical-points frequencies and (16) need to be measured and applied
without any additional information such as coupling coefficients to
be measured or any auxiliary tool such as transparent Smith chart
template required for the determination of QO, which significantly

simplifies the job of QO measurement.
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Further Analysis of Open-Ended Dielectric Sensors

M. Okoniewski, J. Anderson, E. Okoniewska,
K. Caputa, and S. S. Stuchly

Abstract-The effect on the input reflection coefficient of the dimensions
of open-ended coaxial lines is investigated. Using a standard FDTD
technique, the effects of variations in the flange and conductor dimensions
on the reflection coefficient of a 3.6 mm coaxial line immersed in
water or methanol are simulated. Simulation results are compared with
measurements and previous moment method calculations. It is found that
the presence or absence of a flange affects the input reflection coefficient
substantially in some cases. The results also show that inversion formnlas
developed for lines with infinite flanges are not valid for flanges with
finite radii,

I. INTRODUCTION

An open-ended coaxial line immersed in or pressed against an

unknown dielectric can serve as a dielectric sensor [1]-[3]. Inversion
formulas giving the permittivity as a function of the measured

reflection coefficient are required for this application. Such formulas

are constructed using multiple numerical simulation results. An
idealized sensor with an assumed infinite flange and inner and outer
conductor inner radii corresponding to a characteristic impedance of
precisely 500 was previously analyzed using the moment method
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